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Abstract. Pairwise thermal entanglement in the three-qubit XXX Heisenberg model with next nearest
neighbor interaction and a nonuniform magnetic field has been studied. It’s found that the next nearest
neighbor interaction has a great effect on the entanglement between the next nearest neighbor sites, but
has slight effect on the nearest neighbor entanglement (NNE). Applying a magnetic field at the middle
site enhances the next nearest neighbor entanglement (NNNE) sharply when there is a small field at the
side sites and the next nearest neighbor coupling constant is positive. A staggered magnetic field helps to
maintain nearest neighbor entanglement obviously.

PACS. 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quan-
tum state engineering and measurements – 03.67.-a Quantum information – 03.65.Ud Entanglement and
quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ states, etc.)

QICS. 03.40.+t Thermal/mixed state entanglement – 04.10.+s Entanglement in spin models

1 Introduction

One of the amusing properties of quantum mechanics is
the entanglement. Entangled states of component systems
and their unique properties have attracted a lot of atten-
tion since the early days [1–4]. Entanglement is respon-
sible for the non-local correlations, which can exist be-
tween spatially separated quantum systems. Recently, it’s
found that entanglement plays a very important role in
quantum information processing, such as quantum tele-
portation [5], superdense coding [6], quantum computa-
tion [7,8] and some cryptographic protocols [9,10]. For a
pair of qubits, the entanglement is rigorously described by
the concurrence [11,12]

C = max {0, λ1 − λ2 − λ3 − λ4} (1.1)

where λi (i = 1, 2, 3, 4) are the positive square roots of the
operator

R = ρ (σy
1 ⊗ σy

2 ) ρ∗ (σy
1 ⊗ σy

2 ) (1.2)
in the descending order and ρ is the density matrix. The
concurrence (1.1) can be rewritten as

C = max

{
0,

[
2 max(λ1, λ2, λ3, λ4) −

4∑
i=1

λi

]}
. (1.3)

This form of the concurrence will be used in the following
calculations. Extensive studies on the thermal entangle-
ment (entanglement at finite temperature) in Heisenberg
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spin models [13–30] have been done. The Heisenberg spin
chain has been used to construct a quantum computer and
quantum dots [31], nuclear spins [32], electronic spins [33]
and optical lattices [34]. By proper coding, the Heisenberg
interaction alone can be used for quantum computa-
tion [35–37].

In this article, we focus our attention on the three-
qubit XXX chain with next nearest neighbor interaction
and a nonuniform magnetic field. Effects on NNE and
NNNE by the next nearest neighbor coupling constant
and the magnetic field are studied. To our knowledge, no
one has done such a discussion before. The discussions are
arranged as follows. The next section is the model and
the exact solution. The third section deals with the case
of finite temperature. The final section is the conclusion.

2 The model and the exact solution

For the three-qubit XXX chain under external magnetic
fields and with next nearest neighbor interaction, the
Hamiltonian is

H = J �S1 · �S2 + J �S2 · �S3 + J ′�S1 · �S3

− S1zB − S3zB − S2zb (2.1)

where b is the magnetic field at the middle site, B the
magnetic field at the other two sites, J and J ′ are the cou-
pling constants between nearest neighbors and the next
nearest neighbor sites respectively. The Schrödinger equa-
tion H |ψ〉 = E |ψ〉 can be solved this way. Defining two
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operators �L = �S1 + �S3 and �J = �L + �S2, one can prove
that �L2, Jz and H commute with one another. Writ-
ing the eigenvalue of �L2 as l (l + 1), the possible values
for l are 0 and 1. The possible eigenvalues for Jz are
m = ±1/2, ±3/2 as the total spin for three spin-1/2
particles is 1/2 and 3/2. Using |l,m,E〉 to represent the
eigenstates of the system, we find that |1, 1/2, E〉 is the su-
perposition of |111302〉 and (|1103〉 + |0113〉) |12〉

√
2. The

superstition coefficients and the energy are not difficult
to get from the Schrödinger equation. The eigenstates are
identified as |ψ1〉 = |1, 1/2, E1〉 and |ψ2〉 = |1, 1/2, E2〉.
In a similar way, we can find |1,−1/2, E〉, which is the
superposition of |010312〉 and (|1103〉 + |0113〉) |02〉

√
2.

The corresponding eigenstates are identified as |ψ3〉 =
|1,−1/2, E3〉 and |ψ4〉 = |1,−1/2, E4〉. The other eigen-

states are easier to get |1, 3/2, E5〉 = |111312〉 = |ψ5〉,
|1,−3/2, E6〉 = |010302〉 = |ψ6〉, |0, 1/2, E7〉 =
(|1103〉 − |0113〉) |12〉 /

√
2 = |ψ7〉 and |0,−1/2, E8〉 =

(|1103〉 − |0113〉) |02〉 /
√

2 = |ψ8〉. The eigenfunctions are
finally found to be (|ψj〉, j = 5 → 8 are not listed)

|ψ1〉 = A1 (|1103〉 + |0113〉) |12〉 /
√

2 +D1 |111302〉

|ψ2〉 = A2 (|1103〉 + |0113〉) |12〉 /
√

2 +D2 |111302〉

|ψ3〉 = B1 (|1103〉 + |0113〉) |02〉 /
√

2 + F1 |010312〉

|ψ4〉 = B2 (|1103〉 + |0113〉) |02〉 /
√

2 + F2 |010312〉 (2.2)

where the coefficients are
see equations (2.3) above.
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Clearly, |ψ5〉 and |ψ6〉 are disentangled states. For |ψ7〉
and |ψ8〉, qubits 1 and 3 are maximally entangled, but
qubit 2 is not entangled with the other two. For the other
four eigenstates, the three qubits are entangled with one
another. The next nearest neighbor coupling constant J ′
only appears in the energy eigenvalues. The difference
B − b between the magnetic fields B and b influences the
eigenstates. In case of B = b or a uniform magnetic field,
the eigenstates are not affected.

3 Thermal entanglement

At finite temperature, the density operator of the sys-
tem is

ρ (T ) = exp (−H/kT ) /Z (3.1)

where Z = Tr [exp (−H/kT )] =
∑8

i=1 exp (−Ei/kT )
is the partition function. First, let’s deal with NNE.
From (3.1), we get ρ12 (T ) = Tr3ρ. Under the basis |0102〉,
|0112〉, |1102〉 and |1112〉, we have the matrix form for
ρ12 (T )

ρ12 (T ) =
1
Z

⎡
⎢⎢⎢⎢⎢⎣
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By some calculations, the square roots of the op-
erator (1.2) are found to be

√
p1p1/Z,

√
p1p1/Z,

|w +
√
uv| /Z and |w −√

uv| /Z. From (1.3), the concur-
rence is obtained
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Calculations also show that C12(T ) = C23(T ).
Here we consider the effects of the magnetic fields and

the next nearest neighbor interaction. The temperature
effects will be given at the end of this section. The con-
currence C12 (T ) as a function of the magnetic fields B
and b is plotted in Figure 1 for J = 1 or the antiferromag-
netic case. For smaller magnetic fields, the entanglement
is larger. When B and b are in the same direction, the
entanglement drops to zero rapidly. However, if B and b
are in the opposite direction, the entanglement will keep
nonzero for a larger scale. The concurrence is symmetry
about the lines B = b (the uniform magnetic field) and
B = −b (non-uniform or a staggered field), which is sim-
ilar to the former results [13–20]. Comparing Figure 1b
with 1a, one sees that the next nearest neighbor interac-
tion has slight effect on the concurrence.

Figure 2 gives the nearest neighbor concurrence for
J = −1 or the ferromagnetic case. When there is no mag-
netic field, the concurrence is zero, which can also be seen
clearly from Figure 3. A little increase in the magnetic
fields makes the concurrence increase quickly. The concur-
rence decreases when the magnetic fields further increase.



574 The European Physical Journal D

(a)

(b)

Fig. 1. (Color online) The concurrence C12 versus the mag-
netic fields B and b for J = 1, T = 0.05 and (a) J ′ = 0,
(b) J ′ = 0.5.

From the figures, we also notice that the next nearest
neighbor interaction reduces the concurrence and makes
the central area that there is no entanglement become
larger.

To see the entanglement at the centre in Figure 2a, the
change of the entanglement with the magnetic field when
B = −b is plotted in Figure 3. One sees clearly that at
the centre, the entanglement is zero.

Now, let’s turn to the entanglement between the next
nearest neighbor qubits. From (3.1), we obtain ρ13 (T ) =
Tr2ρ. Under the basis |0103〉, |0113〉, |1103〉 and |1113〉, we
have

ρ13 (T ) =
1
Z

⎡
⎢⎢⎢⎢⎣
q1 0 0 0

0 x y 0

0 y x 0

0 0 0 q2

⎤
⎥⎥⎥⎥⎦ (3.4a)

(a)

(b)

Fig. 2. The concurrence C12 (T ) versus the magnetic fields B
and b for J = −1, T = 0.05 and (a) J ′ = 0, (b) J ′ = 0.8.

Fig. 3. The concurrence C12 is plotted as a function of the
magnetic field B when b = −B and J = −1, T = 0.05, J ′ = 0.
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(a) (b)

(c) (d)

Fig. 4. (Color online) The concurrence C13 versus the magnetic fields B and b for J = 1, T = 0.05 and (a) J ′ = −0.5, (b) J ′ = 0,
(c) J ′ = 0.5, (d) J ′ = 0.8.

where the coefficients are

see equations (3.4b) below.

Further, square roots of the operator (1.2) can be found,
which are

√
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√
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The concurrence is then
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(a)

(b)

Fig. 5. The concurrence C13 is plotted as a function of the
magnetic fields B and b when J = 1, T = 0.05, J ′ = 0.5 and
(a) B = −0.2, (b) B = 0.2.

The next nearest neighbor concurrence as a function of
the magnetic fields B and b is plotted in Figure 4 for
J = 1. When J ′ is negative, it has little effect on the
concurrence. However, when J ′ is positive, it makes the
concurrence increase quickly when there is a large mag-
netic field at the middle site and a small field at the side
sites, which can be seen more clearly from Figure 5. Such
a phenomenon of the concurrence we haven’t seen from
former studies [13–30]. For positive J ′, the concurrence is
no longer symmetry about the lines B = b (the uniform
magnetic field) and B = −b (non-uniform or a staggered
field), which is different from the former results [13–20].

In Figure 5, the concurrence as a function of b is plotted
when a fixed value of B is taken. One sees that B behaves
like a biased field. When b is in the same direction with
B, the concurrence increases greatly.

For J = −1, the concurrence has similar behaviors as
shown in Figure 6. For negative and zero J ′, the concur-
rence is very small. For positive J ′, the concurrence can
be increased greatly by applying a magnetic field at the
middle site.

(a)

(b)

(c)

Fig. 6. (Color online) The concurrence C13 versus the mag-
netic fields B and b for J = −1, T = 0.05 and (a) J ′ = 0,
(b) J ′ = 0.5, (c) J ′ = 0.8.
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(a) (b)

(c) (d)

Fig. 7. (Color online) The concurrence C13 is plotted as a function of magnetic field and temperature when J ′ = 0.8 and
(a) J = −1, b = 0, (b) J = −1, B = 0, (c) J = 1, b = 0, (d) J = 1, B = 0.

Finally, let’s discuss the temperature effects. From the
former studies [13–20], we know that increase in the tem-
perature tends to reduce the entanglement, though some-
times the temperature may make the entanglement in-
crease a little (see Fig. 6 in [19]). The concurrence C13

as functions of the magnetic field and the temperature is
shown in following figures.

In Figure 7c, the concurrence increases a little with the
temperature, but finally vanishes with the up-going tem-
perature. One sees from Figures 7b and 7d that a mag-
netic field at the middle site can slow down the decrease
of the entanglement. The nearest neighbor entanglement
is shown in Figure 8.

In Figure 8a, there is also the phenomenon that the
concurrence increases a little and then drops to zero when
the temperature goes up. From Figures 7 and 8 or the for-
mer investigations, one sees that a too high temperature

always destroys the entanglement. Studying the temper-
ature effects make us know what temperature we should
choose to have a proper entanglement.

4 Conclusions

For the three-qubit XXX chain, the next nearest neighbor
interaction and different forms of magnetic fields together
have important effects on the entanglement. Properly
controlling these factors, one can get the entanglement
wanted. It is interesting to see the common effects of the
next nearest neighbor interaction and magnetic fields in
more complex systems such as the four-qubit and five-
qubit systems.
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(a) (b)

Fig. 8. (Color online) The concurrence C12 is plotted as a function of magnetic field and temperature when J = 1, J ′ = 0.8
and (a) b = 0, (b) B = 0.
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